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Transition from continuous to discontinuous material failure in a simple model
of an adhesive layer
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A fine-scale, quasistatic model was used to study the removal of a disordered adhesive layer by a uniform
force applied perpendicular to the layer. The model includes randomly chosen bonding forces of adhesion
between imaginary ‘‘gridblocks’’ within the layer and a substrate, as well as cooperative forces of cohesion
between adjacent gridblocks. For small cooperative forces, the amount of failure varies continuously with the
applied forceF. From infinitesimal failure at a minimum threshold value of the force, the fraction of the layer
removed,f m(F), increases to encompass the total layer, as the applied force increases. This layer-removal
function sharpens as the cooperative forces are increased; i.e., the slope of the layer-removal function,
D f m /DF, increases, so that the amount of failure is more and more sensitive to changes in the applied force.
Indeed, this slope diverges with an exponentg'0.85 when the cooperative forces are approximately 2.1 as
large as the adhesive forces. At small values of the cooperative forces, the layer-removal initiates at many
locations and spreads to nearby blocks. The perimeter enclosing the area removed is fractal with a dimension
Dp'1.3. Increasing the cooperative forces causes the failure to initiate at fewer locations in the array, but to
spread farther because of the larger cooperative forces. At the critical value of 2.1 for the ratio of cohesive to
adhesive forces, the number density of these initiation sites goes to zero, and the ‘‘correlation’’ length~average
range of the spread of failure! diverges with exponentn'0.5. The characteristic time required for failure also
diverges at the same critical value of cohesive/adhesive ratio with an exponent,D'0.9. Therefore, increasing
the cooperative forces of cohesion effects a transition from the continuous response reminiscent of systems
with depinning transitions to the discontinuous response characteristic of standard material fracture. Indeed, the
divergent correlation length signals a transition to the long-range elastic forces that have enabled mean-field
~fiber-bundle! models to be used in the study of standard material fracture.@S1063-651X~98!07012-3#

PACS number~s!: 81.40.Np, 62.20.Mk, 02.70.Ns, 61.43.Bn
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I. INTRODUCTION

Material failure is an issue of major importance and h
therefore, been widely studied for well over a century. Mu
of this work has naturally focused on the buildup of stress
defects, the formation of cracks, the energy changes du
the process, and the dynamics of the crack propagation@1–
21#. A number of quasimicroscopic or microscopic mode
have been used to study these important questions@6–
12,22,23#. Recently, it has been appreciated that the lo
range of the elastic interactions permits a mean-field tr
ment of ordinary fracturing@18#, which treatment can be
mapped onto the democratic fiber-bundle model@14–17#.

Although similar in spirit to much of this quasimicro
scopic modeling, our model has two distinct mater
strengths: an adhesive strength, which tries to maintain c
tact of the layer with the substrate, and a cohesive stren
which tries to maintain the integrity of the layer. The sep
ration of these two effects in the model enables the indep
dent study of various features of material failure, which a
less easily disentangled in the more traditional models.
applied stress causes failure at a threshold that scales p
rily with the adhesive force. However, the cohesive forc
introduce cooperative effects that lead to the familiar build
of stress at defects; this both lowers and sharpens the fa
PRE 581063-651X/98/58~6!/7071~8!/$15.00
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threshold~i.e., lowers the stress at which layer removal o
curs and decreases the range of stresses required to ad
from infinitesimal to complete layer removal!. For strong
cohesive forces, we observed the familiar first-order-like
havior associated with a steplike threshold, as in fiber-bun
models,@14,24#, where nearly total removal~i.e., failure! oc-
curs above threshold but no failure occurs below thresh
In subsequent papers, we focused on the continuous fa
in the model for small cohesive forces, discussing its sim
larities and its differences compared to depinning transiti
and sandpile models@25#; in another paper, we focused o
the size and shape of the fragments formed during the
moval of the layer@26#. In this paper, we focus on the tran
sition from continuous failure to discontinuous failure at
‘‘critical’’ ratio of the strengths of the cohesive and adhesi
forces.

In general, this model describes the strength of a la
adhering to a substrate in the presence of a uniform force
attempts to remove the layer. Although this model was m
tivated by problems encountered in the removal of the la
of filter cake from cylindrical filters~see Fig. 1! during the
backpulse cleaning cycle of hot gas filtration for pressuriz
fluidized bed combustion@27–30#, more mundane realiza
tions include the flaking of paint off of a wall or the adhesio
of tape. A similar model was used to study the electri
7071 © 1998 The American Physical Society
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7072 PRE 58M. FERER AND DUANE H. SMITH
conductivity of a layer; however, in that work, the layer r
mained on the substrate because the adhesive forces
very strong, making the ratio of cohesive to adhesive for
approximately zero, and fragmentation occurred within
layer because of lateral thermal expansion of the subs
@31#.

In our model, increasing the strength of the cohes
forces effects a transition from continuous material failu
reminiscent of depinning transitions and sandpile mod
@32#, to the discontinuous material failure, reminiscent
ordinary fracture and the fiber-bundle models@1,14–18#. In
studying this transition from continuous to discontinuo
material failure, we focus on~i! the layer-removal function
~threshold in earlier papers, e.g.,@24#!, which we define to be
the force dependence of the fraction of mass removed;~ii !
the spatial characteristics of the regions of failure; and~iii !
the characteristic time required for the material failure.

The layer-removal function is defined as the fraction
mass~number of blocks! that is removed at a given value o
applied force, i.e.,f m(F)5 limt→` m(F,t)/M tot . For values
of the cohesive forces below the transition, this layer
moval, f m(F), is a continuous function@25# whose slope
increases to infinity as one approaches the transition
critical value of the ratio of cohesive to adhesive forces. F
stronger cohesive forces~above the transition!, the layer-
removal function is steplike to within the accuracy of o
finite-size simulations. In Sec. III, we characterize the dep
dence of this layer-removal function upon the cohesive
adhesive strength ratio. We find that the slope,d fm /dF, of
the layer removal diverges at a critical value of this cohes
to adhesive ratio, while the position of the midpoint of t
layer function,F1/2, varies smoothly through this transition
The shape of these layer-removal functions and their sh
ening with thickness are in qualitative agreement with

FIG. 1. ~a! Cylindrical filter cake subdivided into blocks.~b!
Simplified ‘‘planar’’ model with periodic boundary conditions con
necting they50 andy5200 edges to mimic the cylindrical sym
metry. ~c! A small cross section showing forces and displa
ments.
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perimental results for removal of dust cake from filters@33#;
also the sharpening of the layer-removal function is con
tent with the practical engineering observation that clean
efficiency is poor if the cake is too thin and that efficien
improves with a thicker cake@34#.

Figures 2 show the near-midpoint failure patterns fo
given realization at a variety of cohesive strengths. As d
cussed in the next section, ‘‘thickness factor,’’T is propor-
tional to the cohesive strength, being the ratio of cohesive
adhesive strengths. For all cases in Fig. 2, failure start
initiation sites~the darkest regions! and progresses to nearb
sites ~the gray scale lightens as time evolves!; there is no
failure in the white regions. An important consequence of
cohesive forces can be seen in these failure patterns. Inc
ing the cooperative forces~i! decreases the number of initia
tion sites and~ii ! increases the range of failure. In Sec. IV
we present quantitative evidence that the number densit
the initiation sites decreases to zero for an infinite syste
while the range of the failure spreading out from these i
tiation sites diverges. In Sec. V, we show that the charac
istic times required for failure diverge at the same critic
value of the cohesive strength.

II. DESCRIPTION OF THE FINE-SCALE MODEL

In the physical system motivating this model, a layer
filter cake is deposited on a cylindrical candle filter to som
thicknesst; then a backpulse of compressed air is appl
from the inside of the candle filter to blow the filter cake o
cleaning the filter. The force actually responsible for remo
ing the layer of filter cake is due to the pressure dropP
across the layer. Details specific to the filter cake remo
function have been discussed in Refs.@24–26#. In this sec-
tion, we present a simplified version of the model.

In our model, the layer is gridded into rectangular bloc
Our model system@shown in Fig. 1~b!# is assumed to be flat
lying in the x-y plane; however, continuity around the cy
inder is preserved by periodic boundary conditions in thy
direction. The layer-removal forceF is applied, perpendicu-
lar to the layer, at the base of each block; as a result e
block will be displaced by some small amount«, in the z
direction. This applied force will be balanced by the adh
sive and cohesive spring forces~with spring constantska and
kc, respectively!. Equation~1! presents the basic relation be
tween the applied forceF on a block atr 5 1

2 ( i , j ) and~i and
j are even integers determining the location along thex andy
directions, respectively! and the displacements of that bloc
and the surrounding blocks:

F5ki , j
a « i , j2$ki 21,j

c ~« i 22,j2« i , j !1ki 11,j
c ~« i 12,j2« i , j !

1ki , j 21
c ~« i , j 222« i , j !1ki , j 11

c ~« i , j 122« i , j !%. ~1!

Here eachka is the spring constant of the adhesive spri
between the~i,j! block and the substrate, and eachkc is the
spring constant of the cohesive spring between two adja
blocks. The model is defined so that the average stiffnes
the adhesive springs is one-half, and the average stiffnes
the cohesive springs isT/2 ~i.e., ^ka&5 1

2 and ^kc&5T/2!.
This parameterT, which we have called the thickness param
eter, gives the ratio of average cohesive to average adhe
force. As discussed in Refs.@24–26#, this thickness param

-
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PRE 58 7073TRANSITION FROM CONTINUOUS TO DISCONTINUOUS . . .
FIG. 2. Failure patterns for 64k systems with thicknessesT51.0, 1.5, 1.7, 2.0, and 2.5. The mass was removed first in the darkest r
and last in the lightest gray region. Mass still adheres to the substrate in the white regions. These show the effect of increasing
forces on decreasing the number of failure initiation sites~sites of early time failure! and in increasing the growth of the regions of failur
Except for the change in thickness, the realizations are identical~i.e., same sets of random numbers, relatively weak bonds in the s
locations, etc.!.
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eter depends upon the thickness of the filter cake la
which is sensible since the cohesive strength of a la
should depend upon the thickness of that layer. Equation~1!
may now be solved for the displacement of any one blo
~i,j!, « i , j . Given the distributions of stiffnesses and the va
of the forceF, one guesses values of the displacements
then iterates this set of equations for all of the displaceme
« i , j until the displacements stabilize between iterations
any adhesive spring is stretched beyond its strength,Sa, i.e.,

ki , j
a « i , j.Si , j

a , ~2!

that spring will break. Similarly, if any cohesive spring
stretched beyond its strength,Sc, i.e.,

ki , j 11
c u« i , j2« i , j 12u.Si , j 11

c , ~3!
r,
r

k
e
d
ts
If

that cohesive spring will break. As with the spring constan
the strengths are chosen so that the average value o
strength of the adhesive springs is given by^Sa&5 1

2 and so
that the average value of the strength of the cohesive spr
is given by^Sa&5T/2. This model is similar to many model
of quasistatic, tensile fracturing in the scientific literature@6–
12#. However, to our knowledge, this is the only modelin
study of the material failure process in which the sing
particle forces and two-particles force are clearly delinea
in that their relative effect can be tuned through a param
ter T.

It is natural to assume that the observed time depende
of the filter cake removal~on the order of a few millisec-
onds! @35# is much slower than the elastic relaxation of t
layer of filter cake~e.g., the inverse frequency of elast
waves or the speed of sound—on the order of fractions
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7074 PRE 58M. FERER AND DUANE H. SMITH
milliseconds! @36,37#. This justifies a quasistatic proces
where the layer reaches elastic equilibrium@as given by Eq.
~1!# between successive breaking of bonds; this quasis
model seems especially justified near the threshold, wh
the failure occurs slowly, requiring many time steps. T
computations in our quasistatic model proceed as follows~i!
with the layer, at equilibrium, under no load, the remov
force F is applied;~ii ! the layer reaches a new elastic eq
librium ~the set of equations for the displacements is itera
until stabilization is reached!; ~iii ! then at the end of this time
step, each bond weaker than the actual stress is broken,
~2! and~3!; ~iv! steps~ii ! and~iii !, which together constitute
one time step, are repeated, until a final time step at which
further bonds break. Once some bonds have broken a
end of a time step, the nearby bonds will be under a gre
stress, increasing the likelihood that they will break at
end of the next time step. In this cascade, more bonds b
than would have broken without the interaction mediated
the cohesive bonds. Thus the cooperative effect resul
from the cohesive bonds produces a cascade that lowers
sharpens the threshold, i.e., strengthening the cohesive b
both decreases the removal force at which cleaning oc
and decreases the range of forces required to progress
infinitesimal to complete layer removal.

In reality, the ‘‘cohesive’’ forces may be even more si
nificant than the ‘‘adhesive’’ forces. The ‘‘thickness param
eter’’ T is the ratio of these two forces~also of the two
breaking stresses!, so that in Eqs.~1!–~3! varyingT will vary
the relative effect and importance of the adhesive and co
sive forces~and strengths!. Therefore, the natural variables
our problem are~i! the applied removal forceF; ~ii ! the
thickness parameterT; ~iii ! the number of time steps;~iv! the
system size, i.e., the number of blocks; as well as~v! the
distributions of stiffnesses and strengths. To reduce the c
plexity of the results, we will assume that the applied
moval forceF is constant and uniform, but the model is n
limited to this simplification. In all of our simulations, w
have chosen a uniform distribution of stiffnesses. Each of
spring constants was chosen randomly from a flat distri
tion. However, relying on the spring analogy for the filt
cake, we assume that thicker bonds between granules in
filter cake will be both stiffer and stronger since they can
mimicked by more springs connecting the granules; for t
reason, each strength was strongly correlated with the s
ness, in that each strength was chosen randomly fro
Gaussian distribution, which was sharply peaked about
value for that spring constant. Using a more sharply pea
distribution of stiffnesses and strengths would only serve
further sharpen this threshold, narrowing the range of
moval forces over which the failure occurs; this would p
tially mask the effect we are investigating@24#.

III. DIVERGENCE IN THE RESPONSE OF MASS
REMOVAL TO APPLIED FORCE

Figure 3 shows the massm(F,t) ~i.e., number of blocks!
removed as a function of applied forceF and time t for
thicknessT51.5, where the cohesive forces are one an
half times as large as the adhesive forces for several va
of the removal force. For large enough forces, all of the m
~here,mtot564k! will be removed; while for small forces, no
tic
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mass is removed. In all cases, there is a short prerem
period ~weakly force dependent! where bonds are breakin
but no mass is removed. Then, mass is removed at a fo
dependent rate up to a limiting fractional value,f m(F)
5 limt→` m(F,t)/mtot beyond which no more mass is re
moved or bonds broken. The transition from continuous
discontinuous behavior is most clearly shown in this for
dependence of the limiting fractional mass removal. T
layer-removal functionf m(F) ~threshold function in earlier
papers, e.g., Ref.@24#! is shown in Fig. 4 forT51.5. This
threshold function is best characterized by the midpoint
cation where half of the mass is removed,F1/2, and by the
maximum slope,x5(d fm /dF)max ~slope at the inflection
point, which occurs near the midpoint!.

Thus far, all of the data presented are for systems w
64 000 blocks that are 320 blocks long and 200 bloc
‘‘around the filter.’’ We have performed numerous simul
tions for systems with sizes from 875 to 643103 blocks.
Figure 5 shows the values forF1/2 andx5(d fm /dF)max for

FIG. 3. Mass removed vs time for 64k models with thickness
T51.5 at forcesF5F1/21dF from dF520.010 to dF50.020.
F1/250.257860.0003. Each datum represents the average
m(t,F) over ten different realizations for the same time and
same value ofdF ~difference between the applied force and t
midpoint force for each of the realizations!.

FIG. 4. Layer-removal function vs applied force for thickne
T51.5 fractional mass removedf m(F)5M (`,F)/M tot vs applied
force F, whereM tot564k. The open circles give thet5` results
from Fig. 3. The1 symbols give results from individual realiza
tions from the runs used to determineF1/2 for each realization; in
this figure, these data were shifted horizontally so that the midp
force for each realization was at 0.2578, which is the average v
of the midpoint force.
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PRE 58 7075TRANSITION FROM CONTINUOUS TO DISCONTINUOUS . . .
a variety of thicknesses as well as a variety of system si
the standard errors that are smaller than the plot symbols
not shown. The solid lines show the data fits discussed
low. These data suggest a second-to first-order transition
thickness between 2.0,T,2.5. The data for x
5(d fm /dF)max in this figure show that any divergence mu
occur for T.2. Data from 64k systems forT52.5 show a
discontinuous layer-removal function with 94.8% removal
threshold and 0.006% removal for a force 0.001 bel
threshold; this determines an upper bound ofT52.5 on the
location of the transition.

Because of fluctuations near the transition, finite-size
fects cause the data to become very noisy and essen
uninterpretable near the transition; however, the data s
interpretable and, therefore, hopefully, reliable~i! up to T
'0.9 for the 875-block systems,~ii ! up toT'1.2 for the 4k
systems,~iii ! up toT'1.3 for the 16k systems, and~iv! up to
T'2 for the 64k systems. All of the results presented a
from simulations for these ranges where the data are o
moderately noisy and seem accessible to reliable interpr
tion. Furthermore, the results presented have a neglig
size dependence in the above ranges; however, above
transition, there is evidence of the usual decrease in stre
with increasing system size@1#.

While the data forx5(d fm /dF)max and f m(F) are con-
sistent with a transition of some sort for 2,T,2.5, the data
for F1/2 are unaffected by this transition, decreasi
smoothly through the transition; a simple polynomial fit
the data forF1/2 is shown in Fig. 5@38#. The apparent diver-
gence inx5(d fm /dF)max is well represented by a powe
law fit as shown in Figs. 5 and 6,

x5~d fm /dF!max5AS Tc

T
21D 2g

, ~4!

where A526.461.0, g50.8560.03, andTc52.1060.02,
with an R50.993, which indicates that the transition occu
at Tc'2.1. The standard error in the fitting of the critic

FIG. 5. The response of the layer removal to applied force,
x5(d fm /dF)max ~x, right vertical axis! and the value of the force
required for removal of one-half of the mass, i.e.,F1/2 ~open circles,
left vertical axis! plotted vs thickness for a variety of system siz
from 875 blocks~the smallest symbols!, 4k, 16k, and lastly 64k
~the largest symbols!. The solid lines show the fits discussed in t
text.
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value of the strength ratio seems optimistic given all t
possible sources for error; we believe that a more conse
tive value is a more reliable estimate of the real uncertain
i.e., Tc52.120.1

10.2.
Figure 7 illustrates how well the data forf m(F) are char-

acterized by these fits tox5(d fm /dF)max andF1/2 in Fig. 6.
In Fig. 7, these fits are used in an attempt to collapse the
for the fractional layer-removal function fromT50.5 up to
T52.0 for the two largest system sizes. All of the fraction
layer-removal functions have a form similar to theT51.5
case in Fig. 4. The fit toF1/2 @38# shifts the midpoints of the
layer-removal functions horizontally so that all occur at ze
variable; the fit to the maximum slope, Eq.~4!, spreads the
range of the horizontal variable so that all the near-midpo
slopes in Fig. 7 have the value 1 in terms of the new varia
The success of this collapse supports our focusing upon
parametrization of the threshold function using midpoint a
slope. This success also argues that the threshold func
can be described by a single universal function, where al
the thickness dependence only serves to scale the ap
force variable.

.,
FIG. 6. Log-log plot ofx(T)5(d fm /dF)max vs $(Tc /T)21%.

The solid line shows the power-law fit to the data@Eq. ~4!#.

FIG. 7. The fits in Fig. 5@i.e., x(T) and F1/2(T)# are used to
collapse data forf m(F) for both 64k ~large symbols! and 16k ~small
symbols! data for thicknessesT50.5, 1, 1.15, 1.2, 1.25, 1.3, 1.5
and 1.7. This shows how successfully the two fits collapse
threshold functionf m(F) to a single scaling function of the variabl
x(T) @F2F1/2(T)#, which shifts the midpoint and adjusts th
slope.
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7076 PRE 58M. FERER AND DUANE H. SMITH
IV. CHARACTERIZING THE CLEANING PATTERNS

The effect that increased cohesive strength has upon
cleaning patterns is illustrated by Fig. 2. Increasing
strength of the cohesive forces both decreases the numb
sites at which failure initiates and increases the even
spread of the failure, until atT52.5 the failure initiates at
one site and spreads throughout the array.

From these patterns, it also seems clear that the region
failure are compact with a rough boundary. In an ear
paper@25# we found that the area was indeed compact a
that the fractal dimension of the length of the perimeter
closing the cleaned regime wasDp51.3060.05 for T50.5
and 1.0, using a variety of system sizes. Fractal analyse
the perimeter for the simulations under consideration h
are consistent with this value of the fractal dimension for
thicknesses up to the transition.

We have defined a quantity similar to correlation length
an attempt to quantify the observed~see Fig. 2! decrease in
the number of sites at which failure initiates and the o
served increase in the range of the spread of failure as
thickness parameter is increased to its value at the transi
This ‘‘correlation’’ length is defined as the root-mean-squa
~rms! radius of independently initiating clusters, which a
in turn, defined using the following rule. In determinin
whether a new failure regime was correlated with previo
failure, a somewhat arbitrary cutoff distance of 2.3a was
employed, wherea is the lattice spacing, i.e., the distan
between two adjacent blocks. At any given time step in
quasistatic process, if localized failure occurs in a regi
that is further than 2.3a from any sites in an existing cluste
this is interpreted as a new initiation site starting a new cl
ter; if the localized failure is closer than 2.3a to an existing
cluster, this new failure belongs to that existing cluster. T
distance of 2.3a was chosen because several instances w
observed where a block this close to a large cluster
removed; and the removal of such a block clearly was c
related to the large cluster. More distant correlated remo
were not observed.

The number of these independent clusters is the num
of failure initiation sites, which we observed to decrease w
increasing thickness: see Fig. 2. To estimate the size of
cluster, the rms radius of each cluster is then determin
these rms radii are then averaged over all the clusters in
realization and then over all realizations.

Clearly, these definitions are not perfect: if failure occu
in a region near to, but further than 2.3a from, a region of
previous failure, the new failure will be treated as a n
failure initiation site even though it may be correlated w
the earlier, nearby failure. Therefore, for larger cohes
forces, the number of initiation sites for thicker systems m
be overestimated, since failure more distant than 2.3 lat
spacings may be correlated to earlier failure. Also,
smaller cohesive forces, the number of initiation sites may
underestimated, since two regions of failure closer than
lattice spacings may be uncorrelated. In any case, this
scription provides a quantitative estimate of the number
independent initiation sites and the subsequent size of
clusters that grow from these initiation sites. Lacking a r
orous procedure for determining correlation lengthj as one
has in thermodynamic phase transitions, this, or so
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equally flawed alternative, may be the best estimate of
correlation length.

The results for the number of initiation sites and avera
cluster size are given in Fig. 8. The number of initiation si
n(T) goes to zero, with a near-linear dependence~slope 1 on
the log-log plot!, as the strength of the cohesive forces a
proach their critical value,

n~T!'BS Tc

T
21D l

, ~5!

where B52.660.2 and l50.9260.07, with anR50.99.
The power-law fit to the divergence in the square of t
correlation length closely matches the divergence in the
sponse of the failure to changes in the applied force, Eq.~4!;
i.e.,

j25e2S Tc

T
21D 22n

, ~6!

wheree2512266 and 2n50.9960.04, with anR50.99. In
these fits, we assumeTc52.1.

Of course, the nonrigorous definition of correlation leng
is a concern. However, as stated above, for the stronger
hesive forces, we expect that this correlation length w
overestimate the number of initiation sites and underestim
the correlation length. Therefore, if this definition errs, it e
by makingn(T) larger than it should be andj2 smaller than
it should be, so that, if anything,n(T) might go to zero faster
andj2 might diverge faster than shown in Fig. 8. This on
strengthens the quantitative evidence for a divergent corr
tion length. These long-range correlations at and above
transition are just the long-range interactions in stand
elastic systems, which validate the use of mean-field the
or fiber-bundle models for studying standard fractu
@14,18#.

V. DIVERGENCE OF THE CHARACTERISTIC TIME
AT THE CRITICAL POINT

Not surprisingly, the onset of the instability that we ha
been studying is associated with a divergence in the t
required for the process. Fortunately, it is simpler to deve

FIG. 8. Log-log plot of the correlation length~x, solid line—
left-hand vertical axis! and the number density of initiation site
~solid circles, dashed line—right-hand vertical axis! vs $(Tc /T)
21% for both 64k and 16k block systems. The lines show the pow
law fits, Eqs.~5! and ~6!.
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a reliable definition of characteristic time than it was a de
nition for the correlation length. We choose to define a ti
associated with the midrange of the threshold function~e.g.,
dF50 in Fig. 3!, because this midrange seems to be
robust, in that size dependence~@25#, also Figs. 5 and 7! and
even variations between different realizations@25# are unim-
portant here. At a removal force equal toF1/2, where half of
the mass will eventually be removed, we define the cha
teristic timeu to be that time at which one quarter of the to
mass is removed, i.e., the midpoint mass for this app
force, m(F1/2,u)5 1

2 m(F1/2,`) ~e.g., m516k and u[t
'27 for dF50 in Fig. 3!. At this time t5u, m(F1/2,t) is
changing the most rapidly, so that there will be less erro
determining this time than there would be for a time whe
the mass were varying slowly. Figure 9 shows the graph
this characteristic time plotted versus@(Tc /T)21#, where
again, we use the critical value of cohesive forces from
fit of x5(d fm /dF)max in Figs. 5 and 6,Tc52.1. The diver-
gence in this characteristic time is well represented by
power law

u5AtS Tc

T
21D 2D

, ~7!

where At512.8360.35 and D50.8860.03, with an R
50.998. Again a value of the exponent similar to that for t
force response of the failure in Eq.~4! and to that for the
correlation length in Eq.~6! is obtained.

VI. CONCLUSIONS

In our simple model of the removal of an adhesive lay
we have located and characterized a transition from cont
ous to discontinuous dependence of the dynamical resp
upon the driving force. In the regime of continuous depe
dence of the dynamical response, the behavior is not un
the behavior for depinning transitions or sandpile mode
where the system has no response below a minimum valu
the driving force~depinning threshold!, and where the re-
sponse increases uniformly from zero as the force incre

FIG. 9. The characteristic timeu(T) vs @(Tc /T21)#, Eq. ~10!;
the straight line shows a power-law fit to the data, Eq.~7!.
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above this minimum value. However, in an earlier paper,
found that quantitative comparison with depinning tran
tions was problematic, perhaps because of the cohe
forces@25#.

For strong enough cohesive forces, the response is dis
tinuous, in that there is no dynamical response infinitesima
below a threshold value of the applied force, while infinite
mally above this threshold value a significant fraction of t
layer is removed. This is similar to the behavior of fractur
in a material under tensile stress, in that at a threshold va
of the stress a macrocrack occurs, which will spread fr
one side of the sample to the other at this constant valu
the stress. Because these elastic forces are so long rang~the
stress field will decrease as 1/Ar from the edge of the crack
@1#! fracturing can be studied using mean-field theory, wh
is known to be valid if the interactions are long range, a
which is equivalent to the more traditional fiber-bund
model @14–18#. Our model provides an opportunity fo
studying the onset of this long-range, elastic interaction
the transition.

We have presented evidence that a transition from c
tinuous to discontinuous layer removal occurs at a criti
value of the ratio of cohesive to adhesive forces. This ratio
approximately 2.1. Although such quantitative details m
not be correctly predicted for an infinite system because
the notoriously subtle size dependence of material fail
@1,12,25#, the evidence supporting the qualitative behav
near the transition is convincing for finite systems.This tran-
sition occurs when the strength of the two-particle forces
enhanced by increasing the thickness parameter to a crit
value at which the qualitative nature of the failure change.
This approach to a critical value of the thickness appear
be associated with a power-law divergence of~i! the re-
sponse of layer removal to changes in the applied force,~ii !
a rather crudely defined correlation length, and~iii ! a char-
acteristic time for the removal. This behavior is extreme
reminiscent of the thermodynamic behavior near seco
order critical points, wherea transition occurs when the ef
fect of two-particle forces (energy/kT) is enhanced by a te
perature reduction to a critical temperature at which th
system begins to phase separate. This approach to the critica
temperature is also associated with power-law divergence
~i! the response of the order parameter to ordering field~e.g.,
the response of volumeV to pressureP, i.e., dV/dP near
vapor-liquid transitions; the response of magnetizationM to
magnetic fieldH, i.e., dM/dH for ferromagnetic transitions
etc.!, ~ii ! the correlation length, and~iii ! the relaxation time
@39–41#. We have allowed the apparent similarity betwe
the dynamical critical point of our model and the thermod
namics of critical points to influence our definitions of th
power laws, Eqs.~4!, ~6!, and~7!.
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